Title: | Tidy Dataframes and Expressions with Statistical Details |
---|---|
Description: | Utilities for producing dataframes with rich details for the most common types of statistical approaches and tests: parametric, nonparametric, robust, and Bayesian t-test, one-way ANOVA, correlation analyses, contingency table analyses, and meta-analyses. The functions are pipe-friendly and provide a consistent syntax to work with tidy data. These dataframes additionally contain expressions with statistical details, and can be used in graphing packages. This package also forms the statistical processing backend for 'ggstatsplot'. References: Patil (2021) <doi:10.21105/joss.03236>. |
Authors: | Indrajeet Patil [cre, aut, cph] |
Maintainer: | Indrajeet Patil <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.6.1 |
Built: | 2024-11-11 19:17:07 UTC |
Source: | https://github.com/indrajeetpatil/statsexpressions |
Creates an expression from a data frame containing statistical details.
Ideally, this data frame would come from having run tidy_model_parameters()
on your model object.
This function is currently not stable and should not be used outside of this package context.
add_expression_col( data, paired = FALSE, statistic.text = NULL, effsize.text = NULL, prior.type = NULL, n = NULL, n.text = ifelse(paired, list(quote(italic("n")["pairs"])), list(quote(italic("n")["obs"]))), digits = 2L, digits.df = 0L, digits.df.error = digits.df, ... )
add_expression_col( data, paired = FALSE, statistic.text = NULL, effsize.text = NULL, prior.type = NULL, n = NULL, n.text = ifelse(paired, list(quote(italic("n")["pairs"])), list(quote(italic("n")["obs"]))), digits = 2L, digits.df = 0L, digits.df.error = digits.df, ... )
data |
A data frame containing details from the statistical analysis and should contain some or all of the the following columns:
|
paired |
Logical that decides whether the experimental design is
repeated measures/within-subjects or between-subjects. The default is
|
statistic.text |
A character that specifies the relevant test statistic.
For example, for tests with t-statistic, |
effsize.text |
A character that specifies the relevant effect size. |
prior.type |
The type of prior. |
n |
An integer specifying the sample size used for the test. |
n.text |
A character that specifies the design, which will determine
what the |
digits , digits.df , digits.df.error
|
Number of decimal places to display
for the parameters (default: |
... |
Currently ignored. |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
set.seed(123) # creating a data frame with stats results stats_df <- cbind.data.frame( statistic = 5.494, df = 29.234, p.value = 0.00001, estimate = -1.980, conf.level = 0.95, conf.low = -2.873, conf.high = -1.088, method = "Student's t-test" ) # expression for *t*-statistic with Cohen's *d* as effect size # note that the plotmath expressions need to be quoted add_expression_col( data = stats_df, statistic.text = list(quote(italic("t"))), effsize.text = list(quote(italic("d"))), n = 32L, n.text = list(quote(italic("n")["no.obs"])), digits = 3L, digits.df = 3L )
set.seed(123) # creating a data frame with stats results stats_df <- cbind.data.frame( statistic = 5.494, df = 29.234, p.value = 0.00001, estimate = -1.980, conf.level = 0.95, conf.low = -2.873, conf.high = -1.088, method = "Student's t-test" ) # expression for *t*-statistic with Cohen's *d* as effect size # note that the plotmath expressions need to be quoted add_expression_col( data = stats_df, statistic.text = list(quote(italic("t"))), effsize.text = list(quote(italic("d"))), n = 32L, n.text = list(quote(italic("n")["no.obs"])), digits = 3L, digits.df = 3L )
Tidy version of the "Bugs" dataset.
bugs_long
bugs_long
A data frame with 372 rows and 6 variables
subject. Dummy identity number for each participant.
gender. Participant's gender (Female, Male).
region. Region of the world the participant was from.
education. Level of education.
condition. Condition of the experiment the participant gave rating for (LDLF: low freighteningness and low disgustingness; LFHD: low freighteningness and high disgustingness; HFHD: high freighteningness and low disgustingness; HFHD: high freighteningness and high disgustingness).
desire. The desire to kill an arthropod was indicated on a scale from 0 to 10.
This data set, "Bugs", provides the extent to which men and women want to kill arthropods that vary in freighteningness (low, high) and disgustingness (low, high). Each participant rates their attitudes towards all anthropods. Subset of the data reported by Ryan et al. (2013).
Ryan, R. S., Wilde, M., & Crist, S. (2013). Compared to a small, supervised lab experiment, a large, unsupervised web-based experiment on a previously unknown effect has benefits that outweigh its potential costs. Computers in Human Behavior, 29(4), 1295-1301.
dim(bugs_long) head(bugs_long) dplyr::glimpse(bugs_long)
dim(bugs_long) head(bugs_long) dplyr::glimpse(bugs_long)
Parametric, non-parametric, robust, and Bayesian measures of centrality.
centrality_description( data, x, y, type = "parametric", conf.level = NULL, tr = 0.2, digits = 2L, ... )
centrality_description( data, x, y, type = "parametric", conf.level = NULL, tr = 0.2, digits = 2L, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The grouping (or independent) variable in |
y |
The response (or outcome or dependent) variable from |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
conf.level |
Scalar between |
tr |
Trim level for the mean when carrying out |
digits |
Number of digits for rounding or significant figures. May also
be |
... |
Currently ignored. |
This function describes a distribution for y
variable for each level of the
grouping variable in x
by a set of indices (e.g., measures of centrality,
dispersion, range, skewness, kurtosis, etc.). It additionally returns an
expression containing a specified centrality measure. The function internally
relies on datawizard::describe_distribution()
function.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Type | Measure | Function used |
Parametric | mean | datawizard::describe_distribution() |
Non-parametric | median | datawizard::describe_distribution() |
Robust | trimmed mean | datawizard::describe_distribution() |
Bayesian | MAP | datawizard::describe_distribution() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- centrality_description(iris, Species, Sepal.Length, type = "parametric") # ----------------------- non-parametric ------------------- centrality_description(mtcars, am, wt, type = "nonparametric") # ----------------------- robust --------------------------- centrality_description(ToothGrowth, supp, len, type = "robust") # ----------------------- Bayesian ------------------------- centrality_description(sleep, group, extra, type = "bayes")
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- centrality_description(iris, Species, Sepal.Length, type = "parametric") # ----------------------- non-parametric ------------------- centrality_description(mtcars, am, wt, type = "nonparametric") # ----------------------- robust --------------------------- centrality_description(ToothGrowth, supp, len, type = "robust") # ----------------------- Bayesian ------------------------- centrality_description(sleep, group, extra, type = "bayes")
Parametric and Bayesian one-way and two-way contingency table analyses.
contingency_table( data, x, y = NULL, paired = FALSE, type = "parametric", counts = NULL, ratio = NULL, alternative = "two.sided", digits = 2L, conf.level = 0.95, sampling.plan = "indepMulti", fixed.margin = "rows", prior.concentration = 1, ... )
contingency_table( data, x, y = NULL, paired = FALSE, type = "parametric", counts = NULL, ratio = NULL, alternative = "two.sided", digits = 2L, conf.level = 0.95, sampling.plan = "indepMulti", fixed.margin = "rows", prior.concentration = 1, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The variable to use as the rows in the contingency table. |
y |
The variable to use as the columns in the contingency table.
Default is |
paired |
Logical indicating whether data came from a within-subjects or
repeated measures design study (Default: |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
counts |
The variable in data containing counts, or |
ratio |
A vector of proportions: the expected proportions for the
proportion test (should sum to |
alternative |
A character string specifying the alternative hypothesis;
Controls the type of CI returned: |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
sampling.plan |
Character describing the sampling plan. Possible options:
|
fixed.margin |
For the independent multinomial sampling plan, which
margin is fixed ( |
prior.concentration |
Specifies the prior concentration parameter, set
to |
... |
Additional arguments (currently ignored). |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | Design | Test | Function used |
Parametric/Non-parametric | Unpaired | Pearson's chi-squared test | stats::chisq.test() |
Bayesian | Unpaired | Bayesian Pearson's chi-squared test | BayesFactor::contingencyTableBF() |
Parametric/Non-parametric | Paired | McNemar's chi-squared test | stats::mcnemar.test() |
Bayesian | Paired | No | No |
Effect size estimation
Type | Design | Effect size | CI available? | Function used |
Parametric/Non-parametric | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Bayesian | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Parametric/Non-parametric | Paired | Cohen's g | Yes | effectsize::cohens_g() |
Bayesian | Paired | No | No | No |
Hypothesis testing
Type | Test | Function used |
Parametric/Non-parametric | Goodness of fit chi-squared test | stats::chisq.test() |
Bayesian | Bayesian Goodness of fit chi-squared test | (custom) |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric/Non-parametric | Pearson's C | Yes | effectsize::pearsons_c() |
Bayesian | No | No | No |
if (identical(Sys.getenv("NOT_CRAN"), "true")) { #### -------------------- association test ------------------------ #### # ------------------------ frequentist --------------------------------- # unpaired set.seed(123) contingency_table( data = mtcars, x = am, y = vs, paired = FALSE ) # paired paired_data <- tibble( response_before = structure(c(1L, 2L, 1L, 2L), levels = c("no", "yes"), class = "factor"), response_after = structure(c(1L, 1L, 2L, 2L), levels = c("no", "yes"), class = "factor"), Freq = c(65L, 25L, 5L, 5L) ) set.seed(123) contingency_table( data = paired_data, x = response_before, y = response_after, paired = TRUE, counts = Freq ) # ------------------------ Bayesian ------------------------------------- # unpaired set.seed(123) contingency_table( data = mtcars, x = am, y = vs, paired = FALSE, type = "bayes" ) # paired set.seed(123) contingency_table( data = paired_data, x = response_before, y = response_after, paired = TRUE, counts = Freq, type = "bayes" ) #### -------------------- goodness-of-fit test -------------------- #### # ------------------------ frequentist --------------------------------- set.seed(123) contingency_table( data = as.data.frame(HairEyeColor), x = Eye, counts = Freq ) # ------------------------ Bayesian ------------------------------------- set.seed(123) contingency_table( data = as.data.frame(HairEyeColor), x = Eye, counts = Freq, ratio = c(0.2, 0.2, 0.3, 0.3), type = "bayes" ) }
if (identical(Sys.getenv("NOT_CRAN"), "true")) { #### -------------------- association test ------------------------ #### # ------------------------ frequentist --------------------------------- # unpaired set.seed(123) contingency_table( data = mtcars, x = am, y = vs, paired = FALSE ) # paired paired_data <- tibble( response_before = structure(c(1L, 2L, 1L, 2L), levels = c("no", "yes"), class = "factor"), response_after = structure(c(1L, 1L, 2L, 2L), levels = c("no", "yes"), class = "factor"), Freq = c(65L, 25L, 5L, 5L) ) set.seed(123) contingency_table( data = paired_data, x = response_before, y = response_after, paired = TRUE, counts = Freq ) # ------------------------ Bayesian ------------------------------------- # unpaired set.seed(123) contingency_table( data = mtcars, x = am, y = vs, paired = FALSE, type = "bayes" ) # paired set.seed(123) contingency_table( data = paired_data, x = response_before, y = response_after, paired = TRUE, counts = Freq, type = "bayes" ) #### -------------------- goodness-of-fit test -------------------- #### # ------------------------ frequentist --------------------------------- set.seed(123) contingency_table( data = as.data.frame(HairEyeColor), x = Eye, counts = Freq ) # ------------------------ Bayesian ------------------------------------- set.seed(123) contingency_table( data = as.data.frame(HairEyeColor), x = Eye, counts = Freq, ratio = c(0.2, 0.2, 0.3, 0.3), type = "bayes" ) }
Parametric, non-parametric, robust, and Bayesian correlation test.
corr_test( data, x, y, type = "parametric", digits = 2L, conf.level = 0.95, tr = 0.2, bf.prior = 0.707, ... )
corr_test( data, x, y, type = "parametric", digits = 2L, conf.level = 0.95, tr = 0.2, bf.prior = 0.707, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The column in |
y |
The column in |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
tr |
Trim level for the mean when carrying out |
bf.prior |
A number between |
... |
Additional arguments (currently ignored). |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing and Effect size estimation
Type | Test | CI available? | Function used |
Parametric | Pearson's correlation coefficient | Yes | correlation::correlation() |
Non-parametric | Spearman's rank correlation coefficient | Yes | correlation::correlation() |
Robust | Winsorized Pearson's correlation coefficient | Yes | correlation::correlation() |
Bayesian | Bayesian Pearson's correlation coefficient | Yes | correlation::correlation() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- corr_test(mtcars, wt, mpg, type = "parametric") # ----------------------- non-parametric ------------------- corr_test(mtcars, wt, mpg, type = "nonparametric") # ----------------------- robust --------------------------- corr_test(mtcars, wt, mpg, type = "robust") # ----------------------- Bayesian ------------------------- corr_test(mtcars, wt, mpg, type = "bayes")
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- corr_test(mtcars, wt, mpg, type = "parametric") # ----------------------- non-parametric ------------------- corr_test(mtcars, wt, mpg, type = "nonparametric") # ----------------------- robust --------------------------- corr_test(mtcars, wt, mpg, type = "robust") # ----------------------- Bayesian ------------------------- corr_test(mtcars, wt, mpg, type = "bayes")
Relevant mostly for {ggstatsplot}
and {statsExpressions}
packages, where
different statistical approaches are supported via this argument: parametric,
non-parametric, robust, and Bayesian. This switch function converts strings
entered by users to a common pattern for convenience.
extract_stats_type(type) stats_type_switch(type)
extract_stats_type(type) stats_type_switch(type)
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
extract_stats_type("p") extract_stats_type("bf")
extract_stats_type("p") extract_stats_type("bf")
Edgar Anderson's Iris Data in long format.
iris_long
iris_long
A data frame with 600 rows and 5 variables
id. Dummy identity number for each flower (150 flowers in total).
Species. The species are Iris setosa, versicolor, and virginica.
condition. Factor giving a detailed description of the attribute
(Four levels: "Petal.Length"
, "Petal.Width"
, "Sepal.Length"
,
"Sepal.Width"
).
attribute. What attribute is being measured ("Sepal"
or "Pepal"
).
measure. What aspect of the attribute is being measured ("Length"
or "Width"
).
value. Value of the measurement.
This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
This is a modified dataset from {datasets}
package.
dim(iris_long) head(iris_long) dplyr::glimpse(iris_long)
dim(iris_long) head(iris_long) dplyr::glimpse(iris_long)
This conversion is helpful mostly for repeated measures design, where
removing NA
s by participant can be a bit tedious.
long_to_wide_converter( data, x, y, subject.id = NULL, paired = TRUE, spread = TRUE, ... )
long_to_wide_converter( data, x, y, subject.id = NULL, paired = TRUE, spread = TRUE, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The grouping (or independent) variable from |
y |
The response (or outcome or dependent) variable from |
subject.id |
Relevant in case of a repeated measures or within-subjects
design ( |
paired |
Logical that decides whether the experimental design is
repeated measures/within-subjects or between-subjects. The default is
|
spread |
Logical that decides whether the data frame needs to be
converted from long/tidy to wide (default: |
... |
Currently ignored. |
A data frame with NA
s removed while respecting the
between-or-within-subjects nature of the dataset.
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# for reproducibility library(statsExpressions) set.seed(123) # repeated measures design long_to_wide_converter( bugs_long, condition, desire, subject.id = subject, paired = TRUE ) # independent measures design long_to_wide_converter(mtcars, cyl, wt, paired = FALSE)
# for reproducibility library(statsExpressions) set.seed(123) # repeated measures design long_to_wide_converter( bugs_long, condition, desire, subject.id = subject, paired = TRUE ) # independent measures design long_to_wide_converter(mtcars, cyl, wt, paired = FALSE)
Parametric, non-parametric, robust, and Bayesian random-effects meta-analysis.
meta_analysis( data, type = "parametric", random = "mixture", digits = 2L, conf.level = 0.95, ... )
meta_analysis( data, type = "parametric", random = "mixture", digits = 2L, conf.level = 0.95, ... )
data |
A data frame. It must contain columns named
|
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
random |
The type of random effects distribution. One of "normal", "t-dist", "mixture", for standard normal, |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
... |
Additional arguments passed to the respective meta-analysis function. |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing and Effect size estimation
Type | Test | CI available? | Function used |
Parametric | Pearson's correlation coefficient | Yes | correlation::correlation() |
Non-parametric | Spearman's rank correlation coefficient | Yes | correlation::correlation() |
Robust | Winsorized Pearson's correlation coefficient | Yes | correlation::correlation() |
Bayesian | Bayesian Pearson's correlation coefficient | Yes | correlation::correlation() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
Important: The function assumes that you have already downloaded the
needed package ({metafor}
, {metaplus}
, or {metaBMA}
) for meta-analysis.
If they are not available, you will be asked to install them.
# setup set.seed(123) library(statsExpressions) # let's use `mag` dataset from `{metaplus}` data(mag, package = "metaplus") dat <- dplyr::rename(mag, estimate = yi, std.error = sei) # ----------------------- parametric ------------------------------------- meta_analysis(dat) # ----------------------- robust ---------------------------------- meta_analysis(dat, type = "random", random = "normal") # ----------------------- Bayesian ---------------------------------- meta_analysis(dat, type = "bayes")
# setup set.seed(123) library(statsExpressions) # let's use `mag` dataset from `{metaplus}` data(mag, package = "metaplus") dat <- dplyr::rename(mag, estimate = yi, std.error = sei) # ----------------------- parametric ------------------------------------- meta_analysis(dat) # ----------------------- robust ---------------------------------- meta_analysis(dat, type = "random", random = "normal") # ----------------------- Bayesian ---------------------------------- meta_analysis(dat, type = "bayes")
Movie information and user ratings from IMDB.
movies_long
movies_long
A data frame with 1,579 rows and 8 variables
title. Title of the movie.
year. Year of release.
budget. Total budget (if known) in US dollars
length. Length in minutes.
rating. Average IMDB user rating.
votes. Number of IMDB users who rated this movie.
mpaa. MPAA rating.
genre. Different genres of movies (action, animation, comedy, drama, documentary, romance, short).
Modified dataset from {ggplot2movies}
package.
https://CRAN.R-project.org/package=ggplot2movies
dim(movies_long) head(movies_long) dplyr::glimpse(movies_long)
dim(movies_long) head(movies_long) dplyr::glimpse(movies_long)
Parametric, non-parametric, robust, and Bayesian one-sample tests.
one_sample_test( data, x, type = "parametric", test.value = 0, alternative = "two.sided", digits = 2L, conf.level = 0.95, tr = 0.2, bf.prior = 0.707, effsize.type = "g", ... )
one_sample_test( data, x, type = "parametric", test.value = 0, alternative = "two.sided", digits = 2L, conf.level = 0.95, tr = 0.2, bf.prior = 0.707, effsize.type = "g", ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
A numeric variable from the data frame |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
test.value |
A number indicating the true value of the mean (Default:
|
alternative |
a character string specifying the alternative
hypothesis, must be one of |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
tr |
Trim level for the mean when carrying out |
bf.prior |
A number between |
effsize.type |
Type of effect size needed for parametric tests. The
argument can be |
... |
Currently ignored. |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | Test | Function used |
Parametric | One-sample Student's t-test | stats::t.test() |
Non-parametric | One-sample Wilcoxon test | stats::wilcox.test() |
Robust | Bootstrap-t method for one-sample test | WRS2::trimcibt() |
Bayesian | One-sample Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | trimmed mean | Yes | WRS2::trimcibt() |
Bayes Factor | difference | Yes | bayestestR::describe_posterior() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- one_sample_test(mtcars, wt, test.value = 3) # ----------------------- non-parametric ------------------- one_sample_test(mtcars, wt, test.value = 3, type = "nonparametric") # ----------------------- robust --------------------------- one_sample_test(mtcars, wt, test.value = 3, type = "robust") # ----------------------- Bayesian ------------------------- one_sample_test(mtcars, wt, test.value = 3, type = "bayes")
# for reproducibility set.seed(123) # ----------------------- parametric ----------------------- one_sample_test(mtcars, wt, test.value = 3) # ----------------------- non-parametric ------------------- one_sample_test(mtcars, wt, test.value = 3, type = "nonparametric") # ----------------------- robust --------------------------- one_sample_test(mtcars, wt, test.value = 3, type = "robust") # ----------------------- Bayesian ------------------------- one_sample_test(mtcars, wt, test.value = 3, type = "bayes")
Parametric, non-parametric, robust, and Bayesian one-way ANOVA.
oneway_anova( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, digits = 2L, conf.level = 0.95, effsize.type = "omega", var.equal = FALSE, bf.prior = 0.707, tr = 0.2, nboot = 100L, ... )
oneway_anova( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, digits = 2L, conf.level = 0.95, effsize.type = "omega", var.equal = FALSE, bf.prior = 0.707, tr = 0.2, nboot = 100L, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The grouping (or independent) variable from |
y |
The response (or outcome or dependent) variable from |
subject.id |
Relevant in case of a repeated measures or within-subjects
design ( |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
paired |
Logical that decides whether the experimental design is
repeated measures/within-subjects or between-subjects. The default is
|
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
effsize.type |
Type of effect size needed for parametric tests. The
argument can be |
var.equal |
a logical variable indicating whether to treat the
two variances as being equal. If |
bf.prior |
A number between |
tr |
Trim level for the mean when carrying out |
nboot |
Number of bootstrap samples for computing confidence interval
for the effect size (Default: |
... |
Additional arguments (currently ignored). |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | > 2 | Fisher's or Welch's one-way ANOVA | stats::oneway.test() |
Non-parametric | > 2 | Kruskal-Wallis one-way ANOVA | stats::kruskal.test() |
Robust | > 2 | Heteroscedastic one-way ANOVA for trimmed means | WRS2::t1way() |
Bayes Factor | > 2 | Fisher's ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() , effectsize::eta_squared() |
Non-parametric | > 2 | rank epsilon squared | Yes | effectsize::rank_epsilon_squared() |
Robust | > 2 | Explanatory measure of effect size | Yes | WRS2::t1way() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | > 2 | One-way repeated measures ANOVA | afex::aov_ez() |
Non-parametric | > 2 | Friedman rank sum test | stats::friedman.test() |
Robust | > 2 | Heteroscedastic one-way repeated measures ANOVA for trimmed means | WRS2::rmanova() |
Bayes Factor | > 2 | One-way repeated measures ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() , effectsize::eta_squared() |
Non-parametric | > 2 | Kendall's coefficient of concordance | Yes | effectsize::kendalls_w() |
Robust | > 2 | Algina-Keselman-Penfield robust standardized difference average | Yes | WRS2::wmcpAKP() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# for reproducibility set.seed(123) library(statsExpressions) # ----------------------- parametric ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE ) # ----------------------- non-parametric ---------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "np" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "np" ) # ----------------------- robust ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "r" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "r" ) # ----------------------- Bayesian ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "bayes" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "bayes" )
# for reproducibility set.seed(123) library(statsExpressions) # ----------------------- parametric ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE ) # ----------------------- non-parametric ---------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "np" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "np" ) # ----------------------- robust ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "r" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "r" ) # ----------------------- Bayesian ------------------------------------- # between-subjects oneway_anova( data = mtcars, x = cyl, y = wt, type = "bayes" ) # within-subjects design oneway_anova( data = iris_long, x = condition, y = value, subject.id = id, paired = TRUE, type = "bayes" )
Preparing text to describe which p-value adjustment method was used
p_adjust_text(p.adjust.method)
p_adjust_text(p.adjust.method)
p.adjust.method |
Adjustment method for p-values for multiple
comparisons. Possible methods are: |
Standardized text description for what method was used.
p_adjust_text("none") p_adjust_text("BY")
p_adjust_text("none") p_adjust_text("BY")
Calculate parametric, non-parametric, robust, and Bayes Factor pairwise comparisons between group levels with corrections for multiple testing.
pairwise_comparisons( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, var.equal = FALSE, tr = 0.2, bf.prior = 0.707, p.adjust.method = "holm", digits = 2L, ... )
pairwise_comparisons( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, var.equal = FALSE, tr = 0.2, bf.prior = 0.707, p.adjust.method = "holm", digits = 2L, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The grouping (or independent) variable from |
y |
The response (or outcome or dependent) variable from |
subject.id |
Relevant in case of a repeated measures or within-subjects
design ( |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
paired |
Logical that decides whether the experimental design is
repeated measures/within-subjects or between-subjects. The default is
|
var.equal |
a logical variable indicating whether to treat the
two variances as being equal. If |
tr |
Trim level for the mean when carrying out |
bf.prior |
A number between |
p.adjust.method |
Adjustment method for p-values for multiple
comparisons. Possible methods are: |
digits |
Number of digits for rounding or significant figures. May also
be |
... |
Additional arguments passed to other methods. |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | Equal variance? | Test | p-value adjustment? | Function used |
Parametric | No | Games-Howell test | Yes | PMCMRplus::gamesHowellTest() |
Parametric | Yes | Student's t-test | Yes | stats::pairwise.t.test() |
Non-parametric | No | Dunn test | Yes | PMCMRplus::kwAllPairsDunnTest() |
Robust | No | Yuen's trimmed means test | Yes | WRS2::lincon() |
Bayesian | NA |
Student's t-test | NA |
BayesFactor::ttestBF() |
Effect size estimation
Not supported.
Hypothesis testing
Type | Test | p-value adjustment? | Function used |
Parametric | Student's t-test | Yes | stats::pairwise.t.test() |
Non-parametric | Durbin-Conover test | Yes | PMCMRplus::durbinAllPairsTest() |
Robust | Yuen's trimmed means test | Yes | WRS2::rmmcp() |
Bayesian | Student's t-test | NA |
BayesFactor::ttestBF() |
Effect size estimation
Not supported.
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
For more, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/pairwise.html
# for reproducibility set.seed(123) library(statsExpressions) #------------------- between-subjects design ---------------------------- # parametric # if `var.equal = TRUE`, then Student's t-test will be run pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "parametric", var.equal = TRUE, paired = FALSE, p.adjust.method = "none" ) # if `var.equal = FALSE`, then Games-Howell test will be run pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "parametric", var.equal = FALSE, paired = FALSE, p.adjust.method = "bonferroni" ) # non-parametric (Dunn test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "nonparametric", paired = FALSE, p.adjust.method = "none" ) # robust (Yuen's trimmed means *t*-test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "robust", paired = FALSE, p.adjust.method = "fdr" ) # Bayes Factor (Student's *t*-test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "bayes", paired = FALSE ) #------------------- within-subjects design ---------------------------- # parametric (Student's *t*-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "parametric", paired = TRUE, p.adjust.method = "BH" ) # non-parametric (Durbin-Conover test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "nonparametric", paired = TRUE, p.adjust.method = "BY" ) # robust (Yuen's trimmed means t-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "robust", paired = TRUE, p.adjust.method = "hommel" ) # Bayes Factor (Student's *t*-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "bayes", paired = TRUE )
# for reproducibility set.seed(123) library(statsExpressions) #------------------- between-subjects design ---------------------------- # parametric # if `var.equal = TRUE`, then Student's t-test will be run pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "parametric", var.equal = TRUE, paired = FALSE, p.adjust.method = "none" ) # if `var.equal = FALSE`, then Games-Howell test will be run pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "parametric", var.equal = FALSE, paired = FALSE, p.adjust.method = "bonferroni" ) # non-parametric (Dunn test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "nonparametric", paired = FALSE, p.adjust.method = "none" ) # robust (Yuen's trimmed means *t*-test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "robust", paired = FALSE, p.adjust.method = "fdr" ) # Bayes Factor (Student's *t*-test) pairwise_comparisons( data = mtcars, x = cyl, y = wt, type = "bayes", paired = FALSE ) #------------------- within-subjects design ---------------------------- # parametric (Student's *t*-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "parametric", paired = TRUE, p.adjust.method = "BH" ) # non-parametric (Durbin-Conover test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "nonparametric", paired = TRUE, p.adjust.method = "BY" ) # robust (Yuen's trimmed means t-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "robust", paired = TRUE, p.adjust.method = "hommel" ) # Bayes Factor (Student's *t*-test) pairwise_comparisons( data = bugs_long, x = condition, y = desire, subject.id = subject, type = "bayes", paired = TRUE )
Expressions with statistics for tidy regression data frames
tidy_model_expressions( data, statistic = NULL, digits = 2L, effsize.type = "omega", ... )
tidy_model_expressions( data, statistic = NULL, digits = 2L, effsize.type = "omega", ... )
data |
A tidy data frame from regression model object (see
|
statistic |
Which statistic is to be displayed (either |
digits |
Number of digits for rounding or significant figures. May also
be |
effsize.type |
Type of effect size needed for parametric tests. The
argument can be |
... |
Currently ignored. |
When any of the necessary numeric column values (estimate
, statistic
,
p.value
) are missing, for these rows, a NULL
is returned instead of an
expression with empty strings.
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# setup set.seed(123) library(statsExpressions) # extract a tidy data frame df <- tidy_model_parameters(lm(wt ~ am * cyl, mtcars)) # create a column containing expression; the expression will depend on `statistic` tidy_model_expressions(df, statistic = "t") tidy_model_expressions(df, statistic = "z") tidy_model_expressions(df, statistic = "chi")
# setup set.seed(123) library(statsExpressions) # extract a tidy data frame df <- tidy_model_parameters(lm(wt ~ am * cyl, mtcars)) # create a column containing expression; the expression will depend on `statistic` tidy_model_expressions(df, statistic = "t") tidy_model_expressions(df, statistic = "z") tidy_model_expressions(df, statistic = "chi")
{parameters}
package output to {tidyverse}
conventionsConvert {parameters}
package output to {tidyverse}
conventions
tidy_model_parameters(model, ...)
tidy_model_parameters(model, ...)
model |
Statistical Model. |
... |
Arguments passed to or from other methods. Non-documented
arguments are |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
model <- lm(mpg ~ wt + cyl, data = mtcars) tidy_model_parameters(model)
model <- lm(mpg ~ wt + cyl, data = mtcars) tidy_model_parameters(model)
Parametric, non-parametric, robust, and Bayesian two-sample tests.
two_sample_test( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, alternative = "two.sided", digits = 2L, conf.level = 0.95, effsize.type = "g", var.equal = FALSE, bf.prior = 0.707, tr = 0.2, nboot = 100L, ... )
two_sample_test( data, x, y, subject.id = NULL, type = "parametric", paired = FALSE, alternative = "two.sided", digits = 2L, conf.level = 0.95, effsize.type = "g", var.equal = FALSE, bf.prior = 0.707, tr = 0.2, nboot = 100L, ... )
data |
A data frame (or a tibble) from which variables specified are to
be taken. Other data types (e.g., matrix,table, array, etc.) will not
be accepted. Additionally, grouped data frames from |
x |
The grouping (or independent) variable from |
y |
The response (or outcome or dependent) variable from |
subject.id |
Relevant in case of a repeated measures or within-subjects
design ( |
type |
A character specifying the type of statistical approach:
You can specify just the initial letter. |
paired |
Logical that decides whether the experimental design is
repeated measures/within-subjects or between-subjects. The default is
|
alternative |
a character string specifying the alternative
hypothesis, must be one of |
digits |
Number of digits for rounding or significant figures. May also
be |
conf.level |
Scalar between |
effsize.type |
Type of effect size needed for parametric tests. The
argument can be |
var.equal |
a logical variable indicating whether to treat the
two variances as being equal. If |
bf.prior |
A number between |
tr |
Trim level for the mean when carrying out |
nboot |
Number of bootstrap samples for computing confidence interval
for the effect size (Default: |
... |
Currently ignored. |
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statistic
df
: the numeric value of a parameter being modeled (often degrees
of freedom for the test)
df.error
and df
: relevant only if the statistic in question has
two degrees of freedom (e.g. anova)
p.value
: the two-sided p-value associated with the observed statistic
method
: the name of the inferential statistical test
estimate
: estimated value of the effect size
conf.low
: lower bound for the effect size estimate
conf.high
: upper bound for the effect size estimate
conf.level
: width of the confidence interval
conf.method
: method used to compute confidence interval
conf.distribution
: statistical distribution for the effect
effectsize
: the name of the effect size
n.obs
: number of observations
expression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student's or Welch's t-test | stats::t.test() |
Non-parametric | 2 | Mann-Whitney U test | stats::wilcox.test() |
Robust | 2 | Yuen's test for trimmed means | WRS2::yuen() |
Bayesian | 2 | Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::akp.effect() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student's t-test | stats::t.test() |
Non-parametric | 2 | Wilcoxon signed-rank test | stats::wilcox.test() |
Robust | 2 | Yuen's test on trimmed means for dependent samples | WRS2::yuend() |
Bayesian | 2 | Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::wmcpAKP() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
# ----------------------- within-subjects ------------------------------------- # data df <- dplyr::filter(bugs_long, condition %in% c("LDLF", "LDHF")) # for reproducibility set.seed(123) # ----------------------- parametric --------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "parametric") # ----------------------- non-parametric ----------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "nonparametric") # ----------------------- robust -------------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "robust") # ----------------------- Bayesian --------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "bayes") # ----------------------- between-subjects ------------------------------------- # for reproducibility set.seed(123) # ----------------------- parametric --------------------------------------- # unequal variance two_sample_test(ToothGrowth, supp, len, type = "parametric") # equal variance two_sample_test(ToothGrowth, supp, len, type = "parametric", var.equal = TRUE) # ----------------------- non-parametric ----------------------------------- two_sample_test(ToothGrowth, supp, len, type = "nonparametric") # ----------------------- robust -------------------------------------------- two_sample_test(ToothGrowth, supp, len, type = "robust") # ----------------------- Bayesian --------------------------------------- two_sample_test(ToothGrowth, supp, len, type = "bayes")
# ----------------------- within-subjects ------------------------------------- # data df <- dplyr::filter(bugs_long, condition %in% c("LDLF", "LDHF")) # for reproducibility set.seed(123) # ----------------------- parametric --------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "parametric") # ----------------------- non-parametric ----------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "nonparametric") # ----------------------- robust -------------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "robust") # ----------------------- Bayesian --------------------------------------- two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "bayes") # ----------------------- between-subjects ------------------------------------- # for reproducibility set.seed(123) # ----------------------- parametric --------------------------------------- # unequal variance two_sample_test(ToothGrowth, supp, len, type = "parametric") # equal variance two_sample_test(ToothGrowth, supp, len, type = "parametric", var.equal = TRUE) # ----------------------- non-parametric ----------------------------------- two_sample_test(ToothGrowth, supp, len, type = "nonparametric") # ----------------------- robust -------------------------------------------- two_sample_test(ToothGrowth, supp, len, type = "robust") # ----------------------- Bayesian --------------------------------------- two_sample_test(ToothGrowth, supp, len, type = "bayes")